If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6.25=0
a = 1; b = 0; c = -6.25;
Δ = b2-4ac
Δ = 02-4·1·(-6.25)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-5}{2*1}=\frac{-5}{2} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+5}{2*1}=\frac{5}{2} =2+1/2 $
| (x-1)+2(x-3)=x-5 | | 7=2y+3=15 | | 4x+8=62-6x | | x¨2-5x+6=0 | | 7/x=14/21 | | Z^4=-2+2i | | 3(2.10i-4i+5)=0 | | 3x-1=10x-15 | | 10x-8=x+9 | | 35+7=x | | 4(y+2)/5=7+5y/13 | | 2.10i+4i+5=0 | | 6-3(3)=x | | 35+7+x=90 | | x/50+x=0.5 | | x−27=5 | | 3x-8=-4x+2 | | |x/(50+x)=0.5| | | x−2=−5 | | (x)/(50+x)=0.5 | | 7x^2-0,12x+3.39=0 | | x/(50+x)=0.4 | | x=2=-11 | | x+2=−11 | | 2x-139=53-10x | | -5x-91=-14x+71 | | -5x-91=-14+71 | | y=13-2y | | 2(3x+x)=84 | | 4(y+2)/5=7+5y/2 | | x/(50+x)=0.5 | | 5x+10=4x^2-215 |